Atomların Elektron Yapısı ( Yrd.Doç.Dr. İbrahim İsmet ÖZTÜRK )

ATOMLARIN ELEKTRON YAPISI Yrd.Doç.Dr. İbrahim İsmet ÖZTÜRK

7.1. KLASİK FİZİKTEN KUANTUM KURAMINA Elektromanyetik Işıma Planck Kuantum Kuramı 7.2. FOTOELEKTRİK OLAYI 7.3. BOHR HİDROJEN ATOMU KURAMI Yayılma Spektrumları Hidrojen Atomunun Yayılma Spektrumu 7.4. ELEKTRONUN 7.4. ELEKTRONUN ĐĐKKĐĐLLĐĐ DO DOĞĞASIASI 7.5. KUANTUM MEKANİĞİ Hidrojen Atomunun Kuantum Mekaniksel Açıklaması 7.6. KUANTUM SAYILARI Baş Kuantum Sayısı (n) Açısal Momentum Kuantum Sayısı ( ll ) ll Manyetik Kuantum Sayısı (mll) ll

Elektron Spin Kuantum Sayısı (m ) s 7.7. ATOM ORBĐTALLERĐ s Orbitalleri p Orbitalleri d Orbitalleri Orbital Enerjileri 7.8. ELEKTRON DA7.8. ELEKTRON DAĞĞILIMIILIMI Pauli Dışlama Đlkesi Diyamanyetizm ve Paramanyetizm Çok Elektronlu Atomlarda Perdeleme Etkisi Hund Kuralı Elektronların Atom Orbitallerine Dağılım Kuralları 7.9. YERLEŞTĐRME ĐLKESĐ

7.1. KLASİK FİZİKTEN KUANTUM KURAMINA Bilim adamlarının atom ve molekülleri anlamaya yönelik ilk çabaları, kısmi bir başarı ile sınırlı kalmıştır. Fizikte, 1900 de Max Planck tarafından yeni bir dönem başlatılmıştır. Değişik sıcaklıklara ısıtılan katıların yayınladığı ışımaya ilişkin verileri inceleyen Planck, atom ve moleküllerin sadece enerji paketcikleri (kuant) adı verilen belirli miktardaki enerjiyi yayınladıklarını keşfetmiştir. O zamana kadar fizikçiler, ışımanın yayılmasında herhangi bir enerjinin açığa çıkmayacağını kabul etmektedirler. Halbuki Planck’ın kuantum kuramı, tüm fiziği altüst etmiştir.

Kuantum kuramını anlamak için, dalgalar hakkında bazı temel kavramların bilinmesi gerekir. Dalga , titreşmeyle enerjiyi aktaran bir olgu olarak düşünülebilir. Bir dalganın hızı, dalganın türüne ve yol aldığı ortama bağlıdır. Ardışık dalgalarda, eş noktalar arasındaki mesafeye, dalga boyu λ (lamda) denir. Bir dalganın frekansı ν (nü) ise, belirli bir noktadan bir saniyede geçen dalga sayısıdır. Bir dalgaya ilişkin genlik ( veya yükseklik ), dalganın orta çizgisinden tepesine veya çukuruna olan dik mesafe olarak tanımlanır.

Uzayda yer alan bir dalganın önemli özelliklerinden biri de hızıdır (u). Dalga boyu ile frekansın çarpımı, dalga hızını verir. Dalga boyu (λ), dalganın uzunluğunu ya da tek bir dalga için mesafeyi gösterir (uzaklık/dalga). Frekans (ν) ise bir referans noktasından birim zamanda geçen dalga sayısını ya da birim zamandaki dalga sayısını (dalga/zaman) gösterir. Bu iki terimin çarpımı ise (mesafe/zaman) hızı verir: Dalga boyu genellikle metre, santimetre veya nanometre birimiyle ifade edilir. Frekans ise hertz (Hz) birimindedir.

Elektromanyetik Işıma Dalgalar, su dalgaları, ses dalgaları, ışık dalgaları gibi birçok farklı türde olabilirler. 1873’de Maxwell görünür ışığın elektromanyetik dalgalardan oluştuğunu öne sürmüştür. Maxwell kuramına göre, bir elektromanyetik dalganın, bir elektrik alan bileşeni, bir de manyetik alan bileşeni bulunur. Bu iki bileşen aynı dalga boyu, aynı frekans ve dolayısıyla aynı hıza sahip olmasına karşın, birbirlerine dik iki düzlemde yol alırlar. Enerjinin, elektromanyetik dalgalar halinde yayınlanması ve iletilmesi, elektromanyetik ışıma olarak adlandırılır.

Elektromanyetik dalgalar vakumda yaklaşık 3.00×108 m/s hızla yol alırlar. Bu hız, bir ortamdan bir diğer ortama farklılık göstermesine karşın, bu fark hesaplamalarda ihmal edilir. Elektromanyetik ışımanın hızı, yani ışık hız, c sembolü ile gösterilir. Elektromanyetik ışımanın dalga boyu ise, genellikle nanometre cinsinden (nm) verilir.

ÖRNEK 1: CEVAP

Planck Kuantum Kuramı Katılar ısıtıldıklarında, geniş bir dalga boyu aralığında elektromanyetik ışıma yayınlarlar. Yapılan çalışmalar, cisimlerin belirli bir sıcaklıkta yayınladıkları ışıma enerjisi miktarının, ışımanın dalga boyuna bağlı olduğunu göstermiştir. Bu kuram kısa dalga boyu için enerji-dalgaboyu ilişkisini açıklayabilmekte başarılı olurken; uzun dalga boyundaki ışımalara açıklama getirememiştir. Başka bir kuram ise bu açıklamanın tam tersinde başarılı olmuştur. Planck, bu problemi alışılagelmiş kavramlardan çok farklı bir varsayım yardımıyla çözmüştür. Klasik fizik, atom ve moleküllerin herhangi bir miktardaki enerjiyi yayınlayabileceklerini (veya soğurabileceklerini) varsaymaktadır. Planck ise, atomların ve moleküllerin enerjiyi, küçük paketler veya demetler gibi belirli miktarda yayınlayıp soğurabileceklerini savunmuştur.

Planck, enerjinin elektromanyetik ışıma şeklinde yayınlanabilen (veya soğurulabilen) en küçük miktarına kuantum adını vermiştir. Tek bir kuantum enerjisi E ise, eşitliği ile ifade edilir. BuBu eeşşitlikteitlikte hh,, PlanckPlanck sabitinisabitini veve νν iseise ıışşımanınımanın frekansınıfrekansını belirtmektedirbelirtmektedir.. Planck sabitinin değeri 6.63×10-34J.s ’dir. Frekans (ν) ν=c/λ olduğundan Kuantum kuramına göre, enerji daima hν’ın katları olarak yayınlanır. Yani hν, 2hν, 3hνşeklinde.

7.2. FOTOELEKTRİK OLAYI Planck’ın kuantum kuramını ortaya koymasından 5 yıl sonra, Alman fizikçi Albert Einstein , bu kuramı kullanarak fiziğin bir diğer gizemi olan fotoelektrik olayını çözdü. Fotoelektrik olayı, bazı metallerin yüzeylerine eşit frekans olarak adlandırılan bir minimum frekanstanfrekanstan itibaren,itibaren, ıışşıkık düdüşşürüldüürüldüğğüü zaman,zaman, metalmetal yüzeyinden elektron çıkışı olayına verilen isimdir. Çıkan elektronların sayısı, metal yüzeyine düşürülen ışığın şiddeti ile doğru orantılı ancak enerjisi ile değildir. Eşik frekansının altındaki uyarma ışığı ne kadar şiddetli olursa olsun, elektron çıkışına neden olmaz.

Einstein sıra dışı bir yaklaşımla ışık demetinin gerçekte bir parçacık seli olduğunu öne sürmüş ve günümüzde bu ışık parçacıkları foton olarak adlandırılmıştır. Einstein Planck’ın kuantum kuramından yola çıkarak, frekansı olan her fotonun aşağıdaki denklemde verilen E enerjisine sahip olacağını öne sürmüştür. ElektronlarınElektronların metalmetal içindeiçinde bulunmalarınıbulunmalarını çekimçekim kuvvetlerikuvvetleri sasağğlarlar.. BuBu nedenle elektronların metalden, ayrılarak serbest hale geçmeleri için, frekansı yeterince yüksek bir ışık gereklidir. Eğer bu fotonların hν değeri, elektronları metale bağlayan enerjiye tam olarak eşit ise, ışık enerjisi metalden elektron koparmak için yeterlidir. Metal yüzeyine daha yüksek bir frekansa sahip ışık gönderilirse, bu durumda elektronların kopmaları yanı sıra, bir miktar kinetik enerjiye sahip olmaları söz konusudur.

Eşitlikte, KE kopan elektronun kinetik enerjisi, BE ise, elektronu metalde tutan bağlayıcı enerjidir. Bu eşitliğin yeniden düzenlenerek yazılmasıyla, aşağıdaki eşitlik elde edilir. Fotonun enerjisi ne kadar büyük olursa, (yani frekansı yüksek) metalden kopankopan elektronunelektronun kinetikkinetik enerjisienerjisi dede oo kadarkadar büyükbüyük olurolur..

ÖRNEK 2: CEVAP

7.3. BOHR HİDROJEN ATOMU KURAMI Yayılma Spektrumları 17. yy’da Newton güneş ışığının farklı renklerde bileşenlerde oluştuğunu ve bunların bir araya gelmesiyle beyaz ışığın meydana geldiğini göstermesiyle birlikte, kimyacılar ve fizikçiler, yayılma spektrumlarının özelliklerini incelemeye başlamışlardır. Bir maddeye, ısıtılarak veya başka yolla enerji aktarımı sonunda, o maddeye özgü yayılma spektrumu gözlenir. Gaz fazındaki atomların yayılma spektrumları ısıtılmış katılarda olduğu gibi dalga boyları kırmızıdan mora doğru değişen sürekli bir dağılım göstermektedir. Aksine, bu durumdaki atomlar görünür bölgenin değişik kesimlerinde parlak çizgiler oluştururlar. Oluşan bu çizgi spektrumları sadece maddenin kendine özgü dalga boylarında ışık yayılmalarıdır. Her elementin kendine özgü bir yayılma spektrumu vardır.

İncelenen gaz, iki elektrot içeren bir boşalım tüpü içinde yer almaktadır. Negatif elektrottan pozitif elektroda doğru yol alan elektronlar, gazla çarpışırlar. Bu çarpışma süreci atomların ışık yaymalarına yol açar. Yayılan ışık bir prizma yardımıyla bileşenlerine ayrılır. Her renk bileşeni dalga boyuna göre belirli bir noktada odaklanır ve fotoğraf plakası üstünde yarığın renkli bir görüntüsü oluşur. Bu renkli görüntülere spektrum çizgileri denir.

Hidrojen Atomunun Yayılma Spektrumu Danimarkalı fizikçi Niels Bohr hidrojen atomunun yayılma spektrumuna yönelik kuramsal bir açıklama yapmıştır. Bohr’un bu çalışmalarından önce, fizikçiler atomların elektron ve protonlardan oluştuğunu bilmekteydiler. Atomları çekirdek etrafındaki dairesel yörüngelerde hızla dönen elektronlarla çevrili cisimler olarak tasarladılar. Hidrojen atomunun pozitif protonu ile negatif elektronu arasındakiarasındaki elektrostatikelektrostatik çekim,çekim, elektronuelektronu içeiçe dodoğğruru çekmekteçekmekte veve bubu kuvvetkuvvet daireseldairesel hareket halindeki elektronun dışa doğru olan ivmesi tarafından dengelenmektedir. Bohr’un atom modeli de dairesel yörüngelerde hareket eden elektronları içermesine karşın, Bohr buna çok önemli bir sınırlama getirmiştir. Hidrojen atomunun tek elektronunun sadece belirli yörüngelerde yer alabileceğini söylemiştir. Her yörüngenin belirli bir enerjisi olduğundan, izin verilen bu yörüngelerde hareket eden elektronların enerjileri de sabit değerlerde olmaları, yani kuantlaşmaları gerekir.

Bir yanıt yazın

Başa dön tuşu