OBJECTIVE:
The objective of this experiment is to study the working principles of a concentric tube heat exchanger operating under parallel and counter flow.
INTRODUCTION:
Up to this point we have learned how to analyze conduction and convection heat transfer in various systems with different geometries. This information, however, is not very useful unless it can be applied to practical situations. For this reason we shall devote this experiment to a prototypical application of heat transfer analysis known as a heat exchanger.
A heat exchanger is a device that efficiently transfers heat from a warmer fluid to a colder fluid. A device we are probably all familiar with is the automobile radiator. Other applications for heat exchangers are found in heating and air conditioning systems. Heat exchangers are categorized in many ways, but the two most common practices are, by the method of construction, and by the flow arrangements. The analysis for designing an effective heat exchanger is very important; after all who’d want to be caught on the side of a deserted desert road with an overheated engine!
In this experiment we studied a concentric tube heat exchanger with parallel and counter flow. For the analysis of this heat exchanger we needed to find important quantities such as the heat transfer coefficient, power emitted, absorbed, and lost, the log mean temperature difference, and the overall efficiency to compare the two types of flow.
…